
A

Major Project

On

VOICE CONTROLLED MOUSE AND KEYBOARD

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

B. VINOD KUMAR (187R1A0565)

P. MUKUNDH (187R1A0566)

Under the Guidance of

A. UDAY KIRAN

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “VOICE CONTROLLED MOUSE AND

KEYBOARD” being submitted by B. Vinod Kumar (187R1A0565), P.Mukundh

(187R1A0566) in partial fulfillment of the requirements for the award of the degree of B.Tech

in Computer Science and Engineering to the Jawaharlal Nehru Technological University

Hyderabad, is a record of bonafide work carried out by him/her under our guidance and

supervision during the year 2021-22.

The results embodied in this thesis have not been submitted to any other University or

Institute for the award of any degree or diploma.

INTERNAL GUIDE
Mr. A.UDAY KIRAN

DIRECTOR
Dr. A. Raji Reddy

Assistant Professor

HEAD OF THE DEPARTMENT

Dr. K. Srujan Raju

EXTERNAL EXAMINER

 Submitted for viva voice Examination held on

ACKNOWLEGDEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our

gratitude to the people who have been instrumental in the successful completion of this

project.

We take this opportunity to express my profound gratitude and deep regard to my

guide A. UDAY KIRAN, Assistant Professor for his exemplary guidance, monitoring and

constant encouragement throughout the project work. The blessing, help and guidance

given by him shall carry us a long way in the journey of life on which we are about to

embark.We also take this opportunity to express a deep sense of gratitude to Project Review

Committee (PRC) Mr. A. Uday Kiran, Mr. J. Narasimharao, Dr. T. S. Mastan Rao,

Mrs. G. Latha, Mr. A. Kiran Kumar, for their cordial support, valuable information and

guidance, which helped us in completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer

Science and Engineering for providing encouragement and support for completing this

project successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the

course of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy,

Chairman for providing excellent infrastructure and a nice atmosphere throughout the

course of this project.

The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their

constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely

acknowledge and thank all those who gave support directly and indirectly in the completion

of this project.

B. VINOD KUMAR (187R1A0565)

P. MUKUNDH (187R1A0566)

i

ABSTRACT

Human computer interaction is a field which focuses on providing a means of

interaction between humans and computers. Controlling the mouse pointer is one of the

best ways to provide a meaningful interaction. The Speech Recognition feature helps us in

building an application using Python that will accept voice commands from the user and

perform certain GUI based actions using the mouse and keyboard. Listening to the input

voice from microphone and converting it to text and performs actions as commanded.

ii

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1 Project Architecture of Voice Controlled

Mouse and Keyboard

7

Figure 3.2 Use case diagram of Voice Controlled

Mouse and Keyboard

9

Figure 3.3 Sequence diagram of Voice Controlled

Mouse and Keyboard

10

Figure 3.4 Activity diagram of Voice Controlled

Mouse and Keyboard

11

iii

LIST OF TABLES

TABLE NO TABLE NAME PAGE NO

Table 6.1 Providing input audio 24

Table 6.2 Performing action for the
command

24

iv

LIST OF SCREENSHOTS

SCREENSHOT NO. SCREENSHOT NAME PAGE NO.

Screenshot 5.1 Main Window 18

Screenshot 5.2 Mouse Up/Down/Right/Left

Commands
19

Screenshot 5.3 Mouse Right/Left/Double click

Commands

20

Screenshot 5.4

Some of the Keyboard

Commands

21

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

LIST OF TABLES iii

LIST OF SCREENSHOTS iv

1. INTRODUCTION

1.1. PROJECT SCOPE 1

1.2. PROJECT PURPOSE 1

1.3. PROJECT FEATURES 1

2. SYSTEM ANALYSIS

2.1. PROBLEM DEFINITION 2

2.2. EXISTING SYSTEM 2

2.2.1. LIMITATIONS OF THE EXISTING SYSTEM 3

2.3.PROPOSED SYSTEM 3

2.3.1. ADVANTAGES OF PROPOSED SYSTEM 3

2.4. FEASIBILITY STUDY 4

2.4.1. ECONOMIC FESIBILITY 4

2.4.2. TECHNICAL FEASIBILITY 4

2.4.3. SOCIAL FEASIBILITY 5

2.5. HARDWARE & SOFTWARE REQUIREMENTS

2.5.1. HARDWARE REQUIREMENTS 5

2.5.2. SOFTWARE REQUIREMENTS 5

2.6. MODULE DESCRIPTION 6

3. ARCHITECTURE

3.1. PROJECT ARCHITECTURE 7

3.2. DESCRIPTION OF THE ARCHITECTURE 8

3.3. USECASE DIAGRAM 9

3.4 . SEQUENCE DIAGRAM 10

3.5 . ACTIVITY DIAGRAM 11

4. IMPLEMENTATION

4.1 SAMPLE CODE 12

5. SCREENSHOTS 18

6. TESTING

6.1 INTRODUCTION TO TESTING 22

6.2 TYPES OF TESTING 22

6.2.1 UNIT TESTING 22

6.2.2 INTEGRATION TESTING 22

6.2.3 FUNCTIONAL TESTING 23

6.3 TEST CASES

6.3.1 PROVIDING INPUT AUDIO 24

6.3.2 PERFORMING ACTION FOR THE COMMAND 24

7. CONCLUSION & FUTURE SCOPE

7.1 PROJECT CONCLUSION 25

7.2 FUTURE SCOPE 25

8. BIBILOGRAPHY

8.1 REFERENCES 26

 8.2 GITHUB LINK 26

1. INTRODUCTION

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 1

1. INTRODUCTION

1.1 PROJECT SCOPE

Voice Controlled Mouse and Keyboard is a system which accepts speech from the

users through a microphone. This speech is transcribed to text by the Google’s Speech-To-

Text API. Then the system will perform actions accordingly. This system can perform

actions like moving Mouse-Cursor (up, down, right, left), opening Applications, change

some system settings like Volume, Brightness, takes Screenshots, terminates itself or it can

also able to shut down or restart the PC.

1.2 PROJECT PURPOSE

There are several reasons why Voice Controlled Mouse and Keyboard is important.

The following is a list of various reasons:

1. Convenient human computer interaction.

2. Making more efficient system for people with disabilities.

3. This Voice Controlled Mouse and Keyboard can be embedded in any

applications for performing computer operations through our voice.

4. It will be very useful if we combine this Voice Controlled Mouse and

keyboard with existing voice assistants.

1.3 PROJECT FEATURES

The main features of this project are that the designer now functions as a problem

solver and tries to sort out the difficulties that the drivers face. The solutions are given as

proposals. The proposal is then weighed with the existing system analytically and the best

one is selected. The proposal is presented to the user for an endorsement by the user. The

proposal is reviewed on user request and suitable changes are made. This is loop that ends

as soon as the user is satisfied with proposal.

2. SYSTEM ANALYSIS

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 2

2.SYSTEM ANALYSIS

SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The

System is studied to the minute details and analyzed. The system analyst plays an important

role of an interrogator and dwells deep into the working of the present system. In analysis,

a detailed study of these operations performed by the system and their relationships within

and outside the system is done. A key question considered here is, “what must be done to

solve the problem?” The system is viewed as a whole and the inputs to the system are

identified. Once analysis is completed the analyst has a firm understanding of what is to be

done.

2.1 PROBLEM DEFINITION

Voice controlled mouse and keyboard is a system which will take human

voice as input and further this feature can be used to perform computer operations

such as moving mouse pointer in the four directions (Left, right, up, down). This

system will also allow the user to open various files and to perform operating

system’s operations for example open notepad, volume up, volume down,

shutdown, restart etc. Our project can be embedded in any of the applications.

2.2 EXISTING SYSTEM

Traditional mouse and keyboard are used as input devices. We are having many

voice based Assistant Applications for smart actions. These Assistants can perform actions

which we assign or order which we want to Perform based on our voice input.

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 3

2.2.1 LIMITATIONS OF EXISTINGSYSTEM

• Sometimes users may fail to use traditional mouse and keyboard in some

situations.

• Physically disabled Persons May face this difficulty while using this

traditional mouse and keyboard.

• These voice-based assistant fails to perform GUI based action.

• This may cause Voice Based Assistant to perform limited actions.

• Physically disabled Persons May face this difficulty while using this

Assistant.

2.3 PROPOSED SYSTEM

In this project, the system accepts user commands through the system’s microphone

and saves the user audio in an audio file. This audio file is sent to the Google cloud.

Google’s Speech-Recognition API (or Speech-To-Text API) helps us to convert the

audio(speech) to the Text. This text is considered as commands and each command is

fetched in the program. If the command exists then the appropriate action is performed by

the system.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

Following are benefits of Voice Controlled Mouse and Keyboard.

1. Actions can be done without using physical mouse and keyboard.

2. Our project makes more efficient human computer interaction for general

users.

3. Our project will also helpful for the people with disabilities.

4. We can handle sessions where we cannot use mouse or keyboard physically.

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 4

2.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put forth

with a very general plan for the project and some cost estimates. During system analysis

the feasibility study of the proposed system is done. This is to ensure that the proposed

system is not a burden to the company. Three key considerations involved in the feasibility

analysis are

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that

effort is concentrated on project, which will give best, return at the earliest. One of the

factors, which affect the development of a new system, is the cost it would require.

The following are some of the important financial questions asked during

preliminary investigation:

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost to

spend for the proposed system. Also, all the resources are already available, it gives an

indication of the system is economically possible for development.

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on the

available technical resources. The developed system must have a modest requirement, as

only minimal or null changes are required for implementing this system.

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 5

2.4.3 SOCIAL FEASIBILITY

This includes the following questions:

• Is there sufficient support for the users?

• Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when developed

and installed. All behavioral aspects are considered carefully and conclude that the project

is behaviorally feasible.

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS

Hardware interfaces specifies the logical characteristics of each interface

between the software product and the hardware components of the system. The

following are some hardware requirements.

• System : I5 processor

• Hard Disk : 2 GB

• Input Devices : Microphone

• Output Devices : Basic Monitor

• Ram : 4GB

2.5.2 SOFTWARE REQUIREMENTS

Software Requirements specifies the logical characteristics of each interface

and software components of the system. The following are some software

requirements.

• Operating system : Windows 7,8,10

• Programming Language : Python

• Tool : Visual Studio Code

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 6

2.6 MODULES DESCRIPTION

The Different modules in this project are:

1. Voice Detection

2. Performing GUI Actions

 2.6.1 Voice Detection

 This module is responsible for recording the audio of user’s speech

or commands. And then converting this audio (analog signals) to the

machine understandable text. This conversion is performed using

Google’s Speech to Text API.

 2.6.2 Performing GUI Actions

 This module is responsible for responding to the user commands

and performing desired actions. Performing GUI actions are performed

by using the PyAutoGui Python package.

3.ARCHITECTURE

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 7

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows how the user’s voice(speech) is converted to text

and how this text(command) is used to perform the actions

Figure 3.1: Project Architecture of Voice Controlled Mouse and Keyboard

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 8

3.2 DESCRIPTION OF THE ARCHITECTURE

User:

User orders the system for his/her requirements through his/her voice.

Audio Listener:

System’s microphone is used to record the user’s voice(speech).

Audio-file:

The recorded audio is saved in an audio file.

Google Cloud-Speech To Text API:

 The saved audio file is sent to the Google’s Speech-To-Text API through Google

Cloud. This API transcribes the audio to the text. This transcribed text is sent back to the

system.

Process Commands:

 Here the system tries to understand the commands i.e., system fetches the

command(text) in the program.

Perform Functionality:

 If the system finds command i.e., the command exists in the program then the pre-

programmed actions are performed.

TTS Service:

 In this project PyTTS is used for Voice Feedback, for Human computer interaction.

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 9

3.3 USE CASE DIAGRAM

 In UML, use-case diagrams model the behavior of a system and help to capture the

requirements of the system. Use-case diagrams describe the high-level functions and scope

of a system. These diagrams also identify the interactions between the system and its actors.

Figure 3.2: Use Case Diagram of Voice Controlled Mouse and Keyboard

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 10

3.4 SEQUENCE DIAGRAM

 A sequence diagram or system sequence diagram (SSD) shows object interactions

arranged in time sequence in the field of software engineering. It depicts the objects

involved in the scenario and the sequence of messages exchanged between the objects

needed to carry out the functionality of scenario.

Figure 3.3: Sequence Diagram of Voice Controlled Mouse and Keyboard

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 11

3.5 ACTIVITY DIAGRAM

 It describes about flow of activity states. Activity diagram is another important

diagram in UML to describe the dynamic aspects of the system. Activity diagram is

basically a flowchart to represent the flow from one activity to another activity. The

activity can be described as an operation of the system. The control flow is drawn from

one operation to another. This flow can be sequential, branched, or concurrent. Activity

diagrams deal with all type of flow control by using different elements such as fork, join,

etc.

Figure 3.4: Activity Diagram of Voice Controlled Mouse and Keyboard

4. IMPLEMENTATION

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 12

4. IMPLEMENTATION

4.1 SAMPLE CODE

4.1.1 VoiceDetection.py

import pyautogui

import speech_recognition

import gui_cntrl

import pyttsx3

from playsound import playsound

import time

tts_engine=pyttsx3.init()

The gui instance will be used to call GUI functions defined by us in 'gui_cntrl.py'

gui = gui_cntrl.gui_control()

recognizer = speech_recognition.Recognizer()

print("\n\nThreshold Value Before calibration:" + str(recognizer.energy_threshold))

with speech_recognition.Microphone() as src:

 while True:

 try:

 audio = recognizer.adjust_for_ambient_noise(src)

 playsound('D:/VS Code Projects/Major_project/2yT.wav')

 print("\n\nThreshold Value After calibration:" +

str(recognizer.energy_threshold))

 print("\nSpeak now:")

 audio = recognizer.listen(src)

 playsound('D:/VS Code Projects/Major_project/3kp.wav')

 speech_to_txt = recognizer.recognize_google(audio,language="en-in").lower()

 #speech_to_txt = recognizer.recognize_google_cloud(audio)

 #speech_recognition.WavFile("file.wav") as src:

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 13

 except Exception as ex:

 print("Sorry. I Could not understand.\n\n")

 tts_engine.say("Sorry! I Could not understand.")

 tts_engine.runAndWait()

 time.sleep(0.3)

 continue

 print("I heard : " + speech_to_txt)

 #---

 # The following if-else block is for the commands I have chosen and

 # call their respective GUI action

 #---

 if (speech_to_txt == "quit program") or (speech_to_txt == "exit program"):

 tts_engine.say("Okay, I'm Quitting now")

 tts_engine.runAndWait()

 break

 elif speech_to_txt == "mouse up" or speech_to_txt == "move up":

 tts_engine.say("moving up")

 tts_engine.runAndWait()

 elif speech_to_txt == "right click" or speech_to_txt == "right-click":

 tts_engine.say("right clicking")

 tts_engine.runAndWait()

 gui.right_click()

 elif speech_to_txt == "double click" or speech_to_txt == "double-click":

 tts_engine.say("double clicking")

 tts_engine.runAndWait()

 gui.double_click()

 elif speech_to_txt == "press enter" or speech_to_txt == "enter":

 tts_engine.say("pressing enter key")

 tts_engine.runAndWait()

 gui.enter()

 elif speech_to_txt=="press left arrow":

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 14

 tts_engine.say('pressing left arrow key')

 tts_engine.runAndWait()

 gui.left_arrow()

 elif speech_to_txt=="press right arrow":

 tts_engine.say('pressing right arrow key')

 tts_engine.runAndWait()

 gui.right_arrow()

 elif speech_to_txt =="press 1":

 tts_engine.say("pressing 1")

 tts_engine.runAndWait()

 gui.num1()

 elif speech_to_txt =="press 2":

 tts_engine.say("pressing 2")

 tts_engine.runAndWait()

 gui.num2()

 elif speech_to_txt=="plus":

 tts_engine.say("pressing plus key")

 tts_engine.runAndWait()

 gui.plus()

 elif speech_to_txt =="shutdown pc":

 print("\nDo you really want to shutdown your pc? ")

 tts_engine.say("Do you really want to shutdown your pc?")

 tts_engine.runAndWait()

 try:

 audio = recognizer.adjust_for_ambient_noise(src)

 playsound('D:/VS Code Projects/Major_project/2yT.wav')

 audio = recognizer.listen(src)

 playsound('D:/VS Code Projects/Major_project/3kp.wav')

 speech_to_txt = recognizer.recognize_google(audio,language="en-in").lower()

 except:

 print("Sorry! I didn't get you")

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 15

 tts_engine.say("Sorry! I didn't get you")

 tts_engine.runAndWait()

 if speech_to_txt=="yes":

 tts_engine.say("Shutting down your pc")

 tts_engine.runAndWait()

 gui.shutdown()

tts_engine.stop()

4.1.2 GUI_Control.py

from time import sleep

import pyautogui

import os

from playsound import playsound

Faster: Moves mouse pointer by 200 pixels

SLOWER: Moves mouse pointer by 20 pixels

FASTER=200

SLOWER=20

class gui_control:

 def __init__(self):

 pyautogui.PAUSE = 1

 pyautogui.FAILSAFE = True

 pyautogui.size()

 def mouse_up(self,recognizer, src):

 while True:

 speech_to_txt = ""

 pyautogui.moveRel(0, -1*SLOWER, duration=0.25)

 try:

 playsound('D:/VS Code Projects/Major_project/2yT.wav')

 audio = recognizer.listen(src)

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 16

 playsound('D:/VS Code Projects/Major_project/3kp.wav')

 speech_to_txt = recognizer.recognize_google(audio).lower()

 except:

 pass

 print("Inside mouse up :" + speech_to_txt)

 if speech_to_txt == "stop":

 break

 elif speech_to_txt == "faster":

 pyautogui.moveRel(0, -1*FASTER, duration=0.25)

 elif speech_to_txt == "slower":

 pyautogui.moveRel(0, -1*SLOWER, duration=0.25)

 def mouse_right(self,recognizer, src):

 #print("Move mouse right")

 pyautogui.moveRel(100, 0, duration=0.25)

 while True:

 speech_to_txt = ""

 pyautogui.moveRel(1*SLOWER, 0, duration=0.25)

 try:

 playsound('D:/VS Code Projects/Major_project/2yT.wav')

 audio = recognizer.listen(src)

 playsound('D:/VS Code Projects/Major_project/3kp.wav')

 speech_to_txt = recognizer.recognize_google(audio).lower()

 except:

 pass

 print("Inside mouse right :" + speech_to_txt)

 if speech_to_txt == "stop":

 break

 elif speech_to_txt == "faster":

 pyautogui.moveRel(1*FASTER, 0, duration=0.25)

 elif speech_to_txt == "slower":

 pyautogui.moveRel(1*SLOWER, 0, duration=0.25)

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 17

 def left_click(self):

 pyautogui.click()

 def right_click(self):

 print("Right Clicking")

 pyautogui.click(button='right', clicks=2, interval=0.25)

 def double_click(self):

 print("Double Clicking")

 pyautogui.click(button='left', clicks=2, interval=0.25)

 def mute_unmute(self):

 print("Pressing Mute/Unmute Key")

 pyautogui.typewrite(['volumemute'])

 def play_pause(self):

 print("Pressing SPACE Key")

 pyautogui.typewrite(['space'])

 def shutdown(self):

 os.system("shutdown /s /t 1")

 def enter(self):

 pyautogui.typewrite(['enter'])

 print("Pressed ENTER key\n")

 def delete(self):

 pyautogui.typewrite(['delete'])

 print("Pressed DELETE key\n")

 def num1(self):

 pyautogui.press('num1')

 def num2(self):

 pyautogui.press('num2')

 def num3(self):

 pyautogui.press('num3')

 def num4(self):

 pyautogui.press('num4')

 def plus(self):

VOICE CONTROLLED MOUSE AND KEYBOARD

5. SCREENSHOTS

VOICE CONTROLLED MOUSE AND KEYBOARD

18

CMRTC

5. Screenshots

5.1 MAIN WINDOW

Figure 5.1: Main Window

VOICE CONTROLLED MOUSE AND KEYBOARD

19

CMRTC

5.2 MOUSE UP / DOWN / RIGHT / LEFT COMMANDS

Figure 5.2: Mouse Up/Down/Right/Left Commands Window

VOICE CONTROLLED MOUSE AND KEYBOARD

20

CMRTC

5.3 MOUSE RIGHT / LEFT / DOUBLE CLICK COMMANDS

Figure 5.3: Mouse Right/Left/Double Click commands Window

VOICE CONTROLLED MOUSE AND KEYBOARD

21

CMRTC

5.4 SOME OF THE KEYBOARD COMMANDS

Figure 5.4: Some Keyboard Commands Window

6.TESTING

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 22

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, subassemblies, assemblies and/or a finished product. It is the

process of exercising software with the intent of ensuring that the Software system meets

its requirements and user expectations and does not fail in an unacceptable manner. There

are various types of tests. Each test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid

outputs. All decision branches and internal code flow should be validated. It is the

testing of individual software units of the application .it is done after the completion

of an individual unit before integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests perform basic tests at

component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process

performs accurately to the documented specifications and contains clearly defined

inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate

that although the components were individually satisfaction, as shown by

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 23

successfully unit testing, the combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the problems that arise from the

combination of components.

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be

 exercised.

 Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined processes.

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 24

6.3 TESTCASES

6.3.1 PROVIDING INPUT AUDIO

Test

case ID

Test case

name
Purpose Test Case Output

1
Microphone

recording test 1

Use it for

Transcription.

The Microphone records

first test audio.

The test input data

provided

successfully.

2
Microphone

recording test 2

Use it for

Transcription.

The Microphone records

second test audio.

The test input data

provided

successfully.

Table 6.1: Providing input audio

6.3.2 PERFORMING ACTION FOR THE COMMAND

Test

case ID

Test case

name
Purpose Input Output

1
Performance

test 1

To check if

the model

performs its

task

A valid command is

given.

Recognized the

Command and respective

action is performed.

2
Performance

test 2

To check if

the model

performs its

task

An invalid command

is given.

Not recognized and no

action is performed.

Table 6.2: Performing action for the command

7. CONCLUSION

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 25

7. CONCLUSION & FUTURESCOPE

7.1 PROJECT CONCLUSION

The project titled as “VOICE CONTROLLED MOUSE AND KEYBOARD is a

console-based application. This software provides facility of performing the actions a

commanded by the user. This software is developed with scalability in mind. The software

is developed with modular approach. All modules in the system have been tested with

valid data and invalid data and everything work successfully. Thus, the system has fulfilled

all the objectives identified and is able to replace the existing system.

Human computer interaction is a field which focuses on providing a means of

interaction between humans and computers. Controlling the mouse pointer is one of the

best ways to provide a meaningful interaction.

The system is very flexible and versatile. Validation checks induced have greatly

reduced errors. Provisions have been made to upgrade the software. The application has

been tested with live data and has provided a successful result. Hence the software has

proved to work efficiently.

7.2 FUTURE SCOPE

In future we can use offline Speech Recognition by downloading the modules

directly into the project files. So that we don’t need internet connection. We simply give

the command, then the command will be processed locally and the action will be

performed. The software can be developed further to include lot of modules because the

proposed system is developed on the view of future.

8. BIBILOGRAPHY

VOICE CONTROLLED MOUSE AND KEYBOARD

CMRTC 26

8. BIBILOGRAPHY

8.1 REFERENCES

[1] PyAutoGUI’s Documentation by readthedocs.io

[2] Python Crash Course by Eric Matthes

8.2 GITHUB LINK

https://github.com/VinodKumarBethi/VOICE-CONTROLLED-

MOUSE-AND-KEYBOARD.git

https://github.com/VinodKumarBethi/VOICE-CONTROLLED-MOUSE-AND-KEYBOARD.git
https://github.com/VinodKumarBethi/VOICE-CONTROLLED-MOUSE-AND-KEYBOARD.git

